HP Forums／HP Calculators（and very old HP Computers）／General Forum $\nabla /$ Division vs DIV－Valentin＇s findings

Division vs DIV－Valentin＇s findings

Threaded Mode｜Linear Mode
2nd April，2023，18：22
Post：\＃1

EdS2 8

Posts： 525
Senior Member
Joined：Apr 2014

Division vs DIV－Valentin＇s findings

I feel this observation is worth a discussion，from over on the latest Pi Day offering：

Valentin Albillo Wrote：

（29th March， 2023 03：16）
Indeed IP（T／（K＊K））and T DIV（K＊K），which would appear at first sight to be equivalent，do really differ at times （though very rarely and for large values of \mathbf{T} ，it seems，）when the former＇s rounding does not match the latter＇s truncation．

A trivial program I wrote（relatively）quickly finds all mismatches for various very large integer \mathbf{T} and for \mathbf{K} from 2 to $I P(\sqrt{ } T)$（i．e．\sim one million possible cases for the first eight values of \mathbf{T} listed）：

T	\＃Mismatches	K
999，999，999，999	31 instances	2，5，8，16，20，
999，999，999，998	19 instances	2，3，8，20，25，
999，999，999，997	12 instances	3，8，25，80，
999，999，999，996	3 instances	3，3125，31250，
999，999，999，995	3 instances	2，3， 254
999，999，999，994	1 instance	254
999，999，999，993	1 instance	254
999，999，999，992	0 instances	－
99，999，999，999	0 instances	－

As you can see，for $\boldsymbol{T}=999,999,999,999$ there are 31 different instances（in about a million）where $\operatorname{IP}(T /(K * K)$ ） differs from T DIV $(K * K)$ ，for \boldsymbol{K} ranging from 1 to $I P(\sqrt{ } T)$ ．The instances begin at $\boldsymbol{K}=\mathbf{2}(249,999,999,999$ vs． 250，000，000，000，respectively）and end at $\boldsymbol{K}=\mathbf{5 0 0}, \mathbf{0 0 0}$（3 vs．4，respectively）．

Doing the same with $\boldsymbol{T}=\mathbf{9 9 9}, 999,999,998$ ，there＇s just 19 instances reported instead of 31 ，and with $\boldsymbol{T}=$ 999，999，999，997 just 12．By the time \boldsymbol{T} equals $999,999,999,995$ ，a mere 3 faulty instances remain（namely for $K=$ 2,3 and 254），then $999,999,999,994$ and $999,999,999,993$ have just the one mismatch（in a million ！）and for 999，999，999，992 and below there seems to be none．

Also，as expected，running this small program for input values with less than 12 digits，say $\boldsymbol{T}=\mathbf{9 9 , 9 9 9 , 9 9 9 , 9 9 9}$ instead，i．e．1E11－1，no instances of mismatches appear at all，and probably the same happens for all smaller \boldsymbol{T} ．

I find myself caught in a superposition of states：a lack of surprise that sometimes division will round upwards，and a great surprise that this rounding happens so very rarely in this experiment．

Checking a few of the examples，it seems that division on this 12 digit calculation will round upwards if the 13th digit would be 5 or greater．Is it obvious as to why this should happen so rarely－am I missing something？

Why these particular divisors，and why should divisors come and go as we traverse the table？Is there pattern here which I＇m not seeing？

These cases are not rare at all, as soon as the dividend is $>1 \mathrm{E} 11$ such as (4E11+7)/4 --> 10000000002 that clearly illustrates what is happening.
Although I don't have a rigorous reasoning, I don't believe the problem can occur with dividend $X<1 E 11$, so $\operatorname{IP}(X / Y)$ is then safe for integer division.
This is not specific to the 71 B or Saturn machines, it happens as well on the 10 -digit 41C and 34 -digit Free42 with the 1E9 and 1E33 limits, respectively.

Rule of the thumb: pay attention to integer divisions when the dividend is less than a factor of 10 from the maximum integer.

J-F
\Rightarrow EMAIL

EdS2 8

Senior Member

Posts: 525
Joined: Apr 2014

RE: Division vs DIV - Valentin's findings

Mmm, but... if what we had was a rounding from a 13th digit, wouldn't we see it about half of the time? We see it rarely, and I think we don't believe there is a 13th digit, so there's something about the mechanics of division here which is, I think, a bit surprising.
(These are decimal calculations... division proceeds by shift and subtract? Is there an estimating of the next digit?)

Email PM Q FIND	2 QUOTE क? REPORT	
<< Next Oldest \| Next Newest 》	Enter Keywords	Search Thread

View a Printable Version
Send this Thread to a Friend
Subscribe to this thread

User(s) browsing this thread: Valentin Albillo*

Contact Us | The Museum of HP Calculators | Return to Top | Return to Content | Lite (Archive) Mode | RSS English (American)

Forum software: MyBB, © 2002-2023 MyBB Group.

